skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Incorvia, Jean_Anne_C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The exceptional capabilities of the human brain provide inspiration for artificially intelligent hardware that mimics both the function and the structure of neurobiology. In particular, the recent development of nanodevices with biomimetic characteristics promises to enable the development of neuromorphic architectures with exceptional computational efficiency. In this work, we propose biomimetic neurons comprised of domain wall-magnetic tunnel junctions that can be integrated into the first trainable CMOS-free recurrent neural network with biomimetic components. This paper demonstrates the computational effectiveness of this system for benchmark tasks and its superior computational efficiency relative to alternative approaches for recurrent neural networks. 
    more » « less
  2. Abstract In the ‘Beyond Moore’s Law’ era, with increasing edge intelligence, domain-specific computing embracing unconventional approaches will become increasingly prevalent. At the same time, adopting a variety of nanotechnologies will offer benefits in energy cost, computational speed, reduced footprint, cyber resilience, and processing power. The time is ripe for a roadmap for unconventional computing with nanotechnologies to guide future research, and this collection aims to fill that need. The authors provide a comprehensive roadmap for neuromorphic computing using electron spins, memristive devices, two-dimensional nanomaterials, nanomagnets, and various dynamical systems. They also address other paradigms such as Ising machines, Bayesian inference engines, probabilistic computing with p-bits, processing in memory, quantum memories and algorithms, computing with skyrmions and spin waves, and brain-inspired computing for incremental learning and problem-solving in severely resource-constrained environments. These approaches have advantages over traditional Boolean computing based on von Neumann architecture. As the computational requirements for artificial intelligence grow 50 times faster than Moore’s Law for electronics, more unconventional approaches to computing and signal processing will appear on the horizon, and this roadmap will help identify future needs and challenges. In a very fertile field, experts in the field aim to present some of the dominant and most promising technologies for unconventional computing that will be around for some time to come. Within a holistic approach, the goal is to provide pathways for solidifying the field and guiding future impactful discoveries. 
    more » « less
  3. Abstract The state‐of‐the‐art magnetic tunnel junction, a cornerstone of spintronic devices and circuits, uses a magnesium oxide tunnel barrier that provides a uniquely large tunnel magnetoresistance at room temperature. However, the wide bandgap and band alignment of magnesium oxide‐iron systems increases the resistance‐area product and creates variability and breakdown challenges. Here, the authors study using first principles narrower‐bandgap scandium nitride (ScN) transport properties in magnetoresistive junctions in comparison to magnesium oxide. The results show a high magnetoresistance in Fe/ScN/Fe via Δ1and symmetry filtering with low wave function decay rates, suggesting scandium nitride could be a new barrier material for spintronic devices. 
    more » « less
  4. Abstract In neuromorphic computing, artificial synapses provide a multi‐weight (MW) conductance state that is set based on inputs from neurons, analogous to the brain. Herein, artificial synapses based on magnetic materials that use a magnetic tunnel junction (MTJ) and a magnetic domain wall (DW) are explored. By fabricating lithographic notches in a DW track underneath a single MTJ, 3–5 stable resistance states that can be repeatably controlled electrically using spin‐orbit torque are achieved. The effect of geometry on the synapse behavior is explored, showing that a trapezoidal device has asymmetric weight updates with high controllability, while a rectangular device has higher stochasticity, but with stable resistance levels. The device data is input into neuromorphic computing simulators to show the usefulness of application‐specific synaptic functions. Implementing an artificial neural network (NN) applied to streamed Fashion‐MNIST data, the trapezoidal magnetic synapse can be used as a metaplastic function for efficient online learning. Implementing a convolutional NN for CIFAR‐100 image recognition, the rectangular magnetic synapse achieves near‐ideal inference accuracy, due to the stability of its resistance levels. This work shows MW magnetic synapses are a feasible technology for neuromorphic computing and provides design guidelines for emerging artificial synapse technologies. 
    more » « less